Financial Document Analysis with Lexa

Transform complex financial documents into structured, analyzable data in seconds. Lexa’s AI-powered parsing extracts critical financial metrics, tables, and insights with highest accuracy.

Why Lexa for Financial Analysis?

99.8% Table Accuracy

Preserve complex financial tables and calculations

Regulatory Compliance

SOC 2 compliant with enterprise security

Multi-Format Support

Process 10-K filings, earnings reports, and prospectuses

Real-Time Processing

Extract insights from 100+ page reports in under 30 seconds

Supported Financial Documents

  • SEC Filings (10-K, 10-Q, 8-K, proxy statements)
  • Earnings Reports and quarterly statements
  • Annual Reports with complex layouts
  • Financial Statements (income, balance sheet, cash flow)
  • Research Reports from analysts
  • Prospectuses and offering memoranda
  • Credit Reports and risk assessments

Quick Start: Parse SEC 10-K Filing

Transform a complex SEC filing into structured data:

from cerevox import Lexa

# Initialize client
client = Lexa(api_key="your-api-key")

# Parse SEC 10-K filing
documents = client.parse("tesla_10k.pdf")
doc = documents[0]

# Extract financial metrics
revenue_chunks = doc.search_content("revenue|total revenue")
profit_chunks = doc.search_content("net income|profit")

print(f"Document: {doc.filename}")
print(f"Pages: {doc.total_pages}")
print(f"Tables found: {len(doc.tables)}")
print(f"Financial metrics extracted: {len(revenue_chunks + profit_chunks)}")

Advanced Financial Analysis Patterns

Extract Financial Tables

Process complex financial statements and preserve structure:

from cerevox import AsyncLexa
import pandas as pd

async def extract_financial_tables(filing_path):
    async with AsyncLexa(api_key="your-api-key") as client:
        documents = await client.parse(filing_path)
        doc = documents[0]
        
        # Convert tables to pandas DataFrames
        financial_tables = []
        for table in doc.tables:
            try:
                # Convert table to structured data
                df = pd.DataFrame(table.to_dict())
                
                # Identify table type based on content
                table_type = identify_table_type(df)
                
                financial_tables.append({
                    'type': table_type,
                    'data': df,
                    'page': table.page_number,
                    'rows': len(df),
                    'columns': len(df.columns)
                })
                
            except Exception as e:
                print(f"Table processing error: {e}")
                continue
        
        return financial_tables

def identify_table_type(df):
    """Identify financial table type based on content"""
    columns_text = ' '.join(df.columns.astype(str)).lower()
    
    if 'revenue' in columns_text or 'income' in columns_text:
        return 'income_statement'
    elif 'assets' in columns_text or 'liabilities' in columns_text:
        return 'balance_sheet'
    elif 'cash flow' in columns_text or 'operating activities' in columns_text:
        return 'cash_flow'
    else:
        return 'other_financial'

# Usage
tables = await extract_financial_tables("company_10k.pdf")
for table in tables:
    print(f"Found {table['type']} with {table['rows']} rows")

Financial Metrics Extraction

Build a comprehensive financial metrics extractor:

import re
from typing import Dict, List

class FinancialMetricsExtractor:
    def __init__(self, api_key: str):
        self.client = AsyncLexa(api_key=api_key)
        
        # Define financial metric patterns
        self.metric_patterns = {
            'revenue': [
                r'total revenue[:\s]+\$?([\d,\.]+)',
                r'net sales[:\s]+\$?([\d,\.]+)',
                r'revenue[:\s]+\$?([\d,\.]+)\s*(million|billion)?'
            ],
            'profit': [
                r'net income[:\s]+\$?([\d,\.]+)',
                r'profit[:\s]+\$?([\d,\.]+)',
                r'earnings[:\s]+\$?([\d,\.]+)'
            ],
            'assets': [
                r'total assets[:\s]+\$?([\d,\.]+)',
                r'assets[:\s]+\$?([\d,\.]+)'
            ],
            'debt': [
                r'total debt[:\s]+\$?([\d,\.]+)',
                r'long.term debt[:\s]+\$?([\d,\.]+)'
            ]
        }
    
    async def extract_metrics(self, document_path: str) -> Dict:
        """Extract financial metrics from document"""
        async with self.client:
            documents = await self.client.parse(document_path)
            doc = documents[0]
            
            metrics = {}
            content = doc.content.lower()
            
            for metric_type, patterns in self.metric_patterns.items():
                values = []
                for pattern in patterns:
                    matches = re.findall(pattern, content, re.IGNORECASE)
                    values.extend(matches)
                
                # Clean and convert values
                cleaned_values = []
                for value in values:
                    if isinstance(value, tuple):
                        value = value[0]  # Extract number from regex group
                    
                    # Remove commas and convert to float
                    try:
                        clean_value = float(value.replace(',', ''))
                        cleaned_values.append(clean_value)
                    except ValueError:
                        continue
                
                metrics[metric_type] = cleaned_values
            
            return {
                'document': document_path,
                'metrics': metrics,
                'summary': self._summarize_metrics(metrics)
            }
    
    def _summarize_metrics(self, metrics: Dict) -> Dict:
        """Generate summary statistics"""
        summary = {}
        for metric_type, values in metrics.items():
            if values:
                summary[metric_type] = {
                    'count': len(values),
                    'max': max(values),
                    'min': min(values),
                    'avg': sum(values) / len(values)
                }
        return summary

# Usage
extractor = FinancialMetricsExtractor("your-api-key")
results = await extractor.extract_metrics("annual_report.pdf")

print(f"Revenue mentions: {len(results['metrics']['revenue'])}")
print(f"Profit data points: {len(results['metrics']['profit'])}")

RAG for Financial Q&A

Build a financial document Q&A system:

from cerevox import AsyncLexa
import openai
from typing import List

class FinancialRAGSystem:
    def __init__(self, cerevox_api_key: str, openai_api_key: str):
        self.cerevox_client = AsyncLexa(api_key=cerevox_api_key)
        openai.api_key = openai_api_key
        self.document_chunks = []
    
    async def ingest_documents(self, financial_docs: List[str]):
        """Ingest and chunk financial documents"""
        async with self.cerevox_client:
            documents = await self.cerevox_client.parse(financial_docs)
            
            # Create vector-ready chunks
            all_chunks = documents.get_all_text_chunks(
                target_size=1000,  # Optimal for financial context
                tolerance=0.15
            )
            
            # Add metadata for better retrieval
            for i, chunk in enumerate(all_chunks):
                chunk_with_metadata = {
                    'id': f'chunk_{i}',
                    'content': chunk,
                    'document': documents[i // len(all_chunks) * len(documents)].filename,
                    'embedding': await self._get_embedding(chunk)
                }
                self.document_chunks.append(chunk_with_metadata)
        
        print(f"Ingested {len(self.document_chunks)} chunks from financial documents")
    
    async def _get_embedding(self, text: str):
        """Get embedding for text chunk"""
        response = await openai.Embedding.acreate(
            model="text-embedding-ada-002",
            input=text
        )
        return response['data'][0]['embedding']
    
    async def query_financials(self, question: str, top_k: int = 5):
        """Answer questions about financial documents"""
        # Get question embedding
        question_embedding = await self._get_embedding(question)
        
        # Find relevant chunks (simplified - use proper vector DB in production)
        relevant_chunks = self._find_similar_chunks(
            question_embedding, 
            top_k
        )
        
        # Build context for LLM
        context = "\n\n".join([
            f"Document: {chunk['document']}\nContent: {chunk['content']}"
            for chunk in relevant_chunks
        ])
        
        # Generate answer
        response = await openai.ChatCompletion.acreate(
            model="gpt-4",
            messages=[
                {
                    "role": "system",
                    "content": "You are a financial analyst assistant. Answer questions based on the provided financial document context. Be precise and cite specific numbers when available."
                },
                {
                    "role": "user",
                    "content": f"Context:\n{context}\n\nQuestion: {question}"
                }
            ]
        )
        
        return {
            'answer': response.choices[0].message.content,
            'sources': [chunk['document'] for chunk in relevant_chunks],
            'relevant_chunks': len(relevant_chunks)
        }
    
    def _find_similar_chunks(self, query_embedding, top_k):
        """Find most similar chunks (simplified implementation)"""
        # In production, use a proper vector database like Pinecone or Weaviate
        import numpy as np
        
        similarities = []
        for chunk in self.document_chunks:
            similarity = np.dot(query_embedding, chunk['embedding'])
            similarities.append((similarity, chunk))
        
        # Sort by similarity and return top k
        similarities.sort(key=lambda x: x[0], reverse=True)
        return [chunk for _, chunk in similarities[:top_k]]

# Usage
rag_system = FinancialRAGSystem(
    cerevox_api_key="your-cerevox-key",
    openai_api_key="your-openai-key"
)

# Ingest financial documents
await rag_system.ingest_documents([
    "tesla_10k_2023.pdf",
    "tesla_q3_earnings.pdf",
    "tesla_annual_report.pdf"
])

# Ask questions
result = await rag_system.query_financials(
    "What was Tesla's revenue growth in 2023?"
)

print(f"Answer: {result['answer']}")
print(f"Sources: {result['sources']}")

Real-World Financial Use Cases

1. Investment Research Automation

async def automated_investment_research(company_docs):
    """Automate investment research from company filings"""
    
    async with AsyncLexa(api_key="your-api-key") as client:
        documents = await client.parse(company_docs)
        
        research_data = {}
        for doc in documents:
            # Extract key investment metrics
            research_data[doc.filename] = {
                'revenue_growth': extract_growth_metrics(doc, 'revenue'),
                'profit_margins': extract_margins(doc),
                'risk_factors': doc.search_content('risk factor|material risk'),
                'management_discussion': extract_md_a(doc),
                'financial_highlights': extract_highlights(doc)
            }
        
        return research_data

def extract_growth_metrics(doc, metric):
    """Extract growth metrics from financial documents"""
    # Search for year-over-year comparisons
    growth_patterns = [
        f'{metric}.*increased.*(\d+\.?\d*)%',
        f'{metric}.*growth.*(\d+\.?\d*)%',
        f'{metric}.*up.*(\d+\.?\d*)%'
    ]
    
    growth_data = []
    for pattern in growth_patterns:
        matches = re.findall(pattern, doc.content, re.IGNORECASE)
        growth_data.extend(matches)
    
    return growth_data

2. Risk Assessment Pipeline

class FinancialRiskAnalyzer:
    def __init__(self, api_key: str):
        self.client = AsyncLexa(api_key=api_key)
    
    async def analyze_risk_factors(self, financial_docs: List[str]):
        """Comprehensive risk factor analysis"""
        
        async with self.client:
            documents = await self.client.parse(financial_docs)
            
            risk_analysis = {}
            for doc in documents:
                # Extract risk sections
                risk_chunks = doc.search_content("risk factor|risks|uncertainties")
                
                # Categorize risks
                categorized_risks = self._categorize_risks(risk_chunks)
                
                # Calculate risk scores
                risk_scores = self._calculate_risk_scores(categorized_risks)
                
                risk_analysis[doc.filename] = {
                    'total_risk_mentions': len(risk_chunks),
                    'risk_categories': categorized_risks,
                    'risk_scores': risk_scores,
                    'high_priority_risks': self._identify_high_priority(risk_chunks)
                }
            
            return risk_analysis
    
    def _categorize_risks(self, risk_chunks):
        """Categorize financial risks"""
        categories = {
            'market_risk': ['market', 'competition', 'demand'],
            'operational_risk': ['operations', 'supply chain', 'manufacturing'],
            'financial_risk': ['liquidity', 'credit', 'debt', 'cash flow'],
            'regulatory_risk': ['regulation', 'compliance', 'legal'],
            'technology_risk': ['cyber', 'technology', 'data breach']
        }
        
        categorized = {cat: [] for cat in categories}
        
        for chunk in risk_chunks:
            chunk_lower = chunk.lower()
            for category, keywords in categories.items():
                if any(keyword in chunk_lower for keyword in keywords):
                    categorized[category].append(chunk)
        
        return categorized

3. Earnings Call Analysis

async def analyze_earnings_transcripts(transcript_files):
    """Analyze earnings call transcripts for sentiment and insights"""
    
    async with AsyncLexa(api_key="your-api-key") as client:
        documents = await client.parse(transcript_files)
        
        earnings_insights = {}
        for doc in documents:
            # Extract Q&A sections
            qa_sections = doc.search_content("questions and answers|q&a")
            
            # Management guidance
            guidance = doc.search_content("guidance|outlook|forecast")
            
            # Key metrics mentioned
            metrics = extract_financial_metrics(doc.content)
            
            earnings_insights[doc.filename] = {
                'qa_insights': len(qa_sections),
                'forward_guidance': guidance,
                'key_metrics': metrics,
                'sentiment_indicators': analyze_sentiment(doc.content)
            }
        
        return earnings_insights

Performance Benchmarks

Lexa delivers exceptional performance for financial document processing:

Processing Speed

30 seconds average for 100+ page 10-K filing

Table Accuracy

99.8% accuracy on complex financial tables

Batch Throughput

500+ documents/hour with async processing

Integration Examples

Pinecone Vector Database

import pinecone
from cerevox import AsyncLexa

# Initialize Pinecone
pinecone.init(api_key="your-pinecone-key", environment="your-env")
index = pinecone.Index("financial-docs")

async def index_financial_documents(document_paths):
    async with AsyncLexa(api_key="your-api-key") as client:
        documents = await client.parse(document_paths)
        
        # Get optimized chunks for financial documents
        chunks = documents.get_all_text_chunks(
            target_size=1000,  # Good for financial context
            tolerance=0.1
        )
        
        # Create embeddings and upsert to Pinecone
        vectors = []
        for i, chunk in enumerate(chunks):
            vector = {
                'id': f'financial_chunk_{i}',
                'values': get_embedding(chunk),
                'metadata': {
                    'content': chunk,
                    'document_type': 'financial',
                    'source': documents[i // len(chunks) * len(documents)].filename
                }
            }
            vectors.append(vector)
        
        # Batch upsert to Pinecone
        index.upsert(vectors=vectors)
        
        return f"Indexed {len(vectors)} financial document chunks"

Security & Compliance

Lexa is SOC 2 Type II certified and provides enterprise-grade security for sensitive financial documents.

  • Data Encryption: End-to-end encryption in transit and at rest
  • Access Controls: Role-based access with audit logging
  • Compliance: SOC 2, GDPR, and financial industry standards
  • Data Residency: Control where your financial data is processed

Next Steps

Ready to transform your financial document analysis?

Financial Document Analysis with Lexa

Transform complex financial documents into structured, analyzable data in seconds. Lexa’s AI-powered parsing extracts critical financial metrics, tables, and insights with highest accuracy.

Why Lexa for Financial Analysis?

99.8% Table Accuracy

Preserve complex financial tables and calculations

Regulatory Compliance

SOC 2 compliant with enterprise security

Multi-Format Support

Process 10-K filings, earnings reports, and prospectuses

Real-Time Processing

Extract insights from 100+ page reports in under 30 seconds

Supported Financial Documents

  • SEC Filings (10-K, 10-Q, 8-K, proxy statements)
  • Earnings Reports and quarterly statements
  • Annual Reports with complex layouts
  • Financial Statements (income, balance sheet, cash flow)
  • Research Reports from analysts
  • Prospectuses and offering memoranda
  • Credit Reports and risk assessments

Quick Start: Parse SEC 10-K Filing

Transform a complex SEC filing into structured data:

from cerevox import Lexa

# Initialize client
client = Lexa(api_key="your-api-key")

# Parse SEC 10-K filing
documents = client.parse("tesla_10k.pdf")
doc = documents[0]

# Extract financial metrics
revenue_chunks = doc.search_content("revenue|total revenue")
profit_chunks = doc.search_content("net income|profit")

print(f"Document: {doc.filename}")
print(f"Pages: {doc.total_pages}")
print(f"Tables found: {len(doc.tables)}")
print(f"Financial metrics extracted: {len(revenue_chunks + profit_chunks)}")

Advanced Financial Analysis Patterns

Extract Financial Tables

Process complex financial statements and preserve structure:

from cerevox import AsyncLexa
import pandas as pd

async def extract_financial_tables(filing_path):
    async with AsyncLexa(api_key="your-api-key") as client:
        documents = await client.parse(filing_path)
        doc = documents[0]
        
        # Convert tables to pandas DataFrames
        financial_tables = []
        for table in doc.tables:
            try:
                # Convert table to structured data
                df = pd.DataFrame(table.to_dict())
                
                # Identify table type based on content
                table_type = identify_table_type(df)
                
                financial_tables.append({
                    'type': table_type,
                    'data': df,
                    'page': table.page_number,
                    'rows': len(df),
                    'columns': len(df.columns)
                })
                
            except Exception as e:
                print(f"Table processing error: {e}")
                continue
        
        return financial_tables

def identify_table_type(df):
    """Identify financial table type based on content"""
    columns_text = ' '.join(df.columns.astype(str)).lower()
    
    if 'revenue' in columns_text or 'income' in columns_text:
        return 'income_statement'
    elif 'assets' in columns_text or 'liabilities' in columns_text:
        return 'balance_sheet'
    elif 'cash flow' in columns_text or 'operating activities' in columns_text:
        return 'cash_flow'
    else:
        return 'other_financial'

# Usage
tables = await extract_financial_tables("company_10k.pdf")
for table in tables:
    print(f"Found {table['type']} with {table['rows']} rows")

Financial Metrics Extraction

Build a comprehensive financial metrics extractor:

import re
from typing import Dict, List

class FinancialMetricsExtractor:
    def __init__(self, api_key: str):
        self.client = AsyncLexa(api_key=api_key)
        
        # Define financial metric patterns
        self.metric_patterns = {
            'revenue': [
                r'total revenue[:\s]+\$?([\d,\.]+)',
                r'net sales[:\s]+\$?([\d,\.]+)',
                r'revenue[:\s]+\$?([\d,\.]+)\s*(million|billion)?'
            ],
            'profit': [
                r'net income[:\s]+\$?([\d,\.]+)',
                r'profit[:\s]+\$?([\d,\.]+)',
                r'earnings[:\s]+\$?([\d,\.]+)'
            ],
            'assets': [
                r'total assets[:\s]+\$?([\d,\.]+)',
                r'assets[:\s]+\$?([\d,\.]+)'
            ],
            'debt': [
                r'total debt[:\s]+\$?([\d,\.]+)',
                r'long.term debt[:\s]+\$?([\d,\.]+)'
            ]
        }
    
    async def extract_metrics(self, document_path: str) -> Dict:
        """Extract financial metrics from document"""
        async with self.client:
            documents = await self.client.parse(document_path)
            doc = documents[0]
            
            metrics = {}
            content = doc.content.lower()
            
            for metric_type, patterns in self.metric_patterns.items():
                values = []
                for pattern in patterns:
                    matches = re.findall(pattern, content, re.IGNORECASE)
                    values.extend(matches)
                
                # Clean and convert values
                cleaned_values = []
                for value in values:
                    if isinstance(value, tuple):
                        value = value[0]  # Extract number from regex group
                    
                    # Remove commas and convert to float
                    try:
                        clean_value = float(value.replace(',', ''))
                        cleaned_values.append(clean_value)
                    except ValueError:
                        continue
                
                metrics[metric_type] = cleaned_values
            
            return {
                'document': document_path,
                'metrics': metrics,
                'summary': self._summarize_metrics(metrics)
            }
    
    def _summarize_metrics(self, metrics: Dict) -> Dict:
        """Generate summary statistics"""
        summary = {}
        for metric_type, values in metrics.items():
            if values:
                summary[metric_type] = {
                    'count': len(values),
                    'max': max(values),
                    'min': min(values),
                    'avg': sum(values) / len(values)
                }
        return summary

# Usage
extractor = FinancialMetricsExtractor("your-api-key")
results = await extractor.extract_metrics("annual_report.pdf")

print(f"Revenue mentions: {len(results['metrics']['revenue'])}")
print(f"Profit data points: {len(results['metrics']['profit'])}")

RAG for Financial Q&A

Build a financial document Q&A system:

from cerevox import AsyncLexa
import openai
from typing import List

class FinancialRAGSystem:
    def __init__(self, cerevox_api_key: str, openai_api_key: str):
        self.cerevox_client = AsyncLexa(api_key=cerevox_api_key)
        openai.api_key = openai_api_key
        self.document_chunks = []
    
    async def ingest_documents(self, financial_docs: List[str]):
        """Ingest and chunk financial documents"""
        async with self.cerevox_client:
            documents = await self.cerevox_client.parse(financial_docs)
            
            # Create vector-ready chunks
            all_chunks = documents.get_all_text_chunks(
                target_size=1000,  # Optimal for financial context
                tolerance=0.15
            )
            
            # Add metadata for better retrieval
            for i, chunk in enumerate(all_chunks):
                chunk_with_metadata = {
                    'id': f'chunk_{i}',
                    'content': chunk,
                    'document': documents[i // len(all_chunks) * len(documents)].filename,
                    'embedding': await self._get_embedding(chunk)
                }
                self.document_chunks.append(chunk_with_metadata)
        
        print(f"Ingested {len(self.document_chunks)} chunks from financial documents")
    
    async def _get_embedding(self, text: str):
        """Get embedding for text chunk"""
        response = await openai.Embedding.acreate(
            model="text-embedding-ada-002",
            input=text
        )
        return response['data'][0]['embedding']
    
    async def query_financials(self, question: str, top_k: int = 5):
        """Answer questions about financial documents"""
        # Get question embedding
        question_embedding = await self._get_embedding(question)
        
        # Find relevant chunks (simplified - use proper vector DB in production)
        relevant_chunks = self._find_similar_chunks(
            question_embedding, 
            top_k
        )
        
        # Build context for LLM
        context = "\n\n".join([
            f"Document: {chunk['document']}\nContent: {chunk['content']}"
            for chunk in relevant_chunks
        ])
        
        # Generate answer
        response = await openai.ChatCompletion.acreate(
            model="gpt-4",
            messages=[
                {
                    "role": "system",
                    "content": "You are a financial analyst assistant. Answer questions based on the provided financial document context. Be precise and cite specific numbers when available."
                },
                {
                    "role": "user",
                    "content": f"Context:\n{context}\n\nQuestion: {question}"
                }
            ]
        )
        
        return {
            'answer': response.choices[0].message.content,
            'sources': [chunk['document'] for chunk in relevant_chunks],
            'relevant_chunks': len(relevant_chunks)
        }
    
    def _find_similar_chunks(self, query_embedding, top_k):
        """Find most similar chunks (simplified implementation)"""
        # In production, use a proper vector database like Pinecone or Weaviate
        import numpy as np
        
        similarities = []
        for chunk in self.document_chunks:
            similarity = np.dot(query_embedding, chunk['embedding'])
            similarities.append((similarity, chunk))
        
        # Sort by similarity and return top k
        similarities.sort(key=lambda x: x[0], reverse=True)
        return [chunk for _, chunk in similarities[:top_k]]

# Usage
rag_system = FinancialRAGSystem(
    cerevox_api_key="your-cerevox-key",
    openai_api_key="your-openai-key"
)

# Ingest financial documents
await rag_system.ingest_documents([
    "tesla_10k_2023.pdf",
    "tesla_q3_earnings.pdf",
    "tesla_annual_report.pdf"
])

# Ask questions
result = await rag_system.query_financials(
    "What was Tesla's revenue growth in 2023?"
)

print(f"Answer: {result['answer']}")
print(f"Sources: {result['sources']}")

Real-World Financial Use Cases

1. Investment Research Automation

async def automated_investment_research(company_docs):
    """Automate investment research from company filings"""
    
    async with AsyncLexa(api_key="your-api-key") as client:
        documents = await client.parse(company_docs)
        
        research_data = {}
        for doc in documents:
            # Extract key investment metrics
            research_data[doc.filename] = {
                'revenue_growth': extract_growth_metrics(doc, 'revenue'),
                'profit_margins': extract_margins(doc),
                'risk_factors': doc.search_content('risk factor|material risk'),
                'management_discussion': extract_md_a(doc),
                'financial_highlights': extract_highlights(doc)
            }
        
        return research_data

def extract_growth_metrics(doc, metric):
    """Extract growth metrics from financial documents"""
    # Search for year-over-year comparisons
    growth_patterns = [
        f'{metric}.*increased.*(\d+\.?\d*)%',
        f'{metric}.*growth.*(\d+\.?\d*)%',
        f'{metric}.*up.*(\d+\.?\d*)%'
    ]
    
    growth_data = []
    for pattern in growth_patterns:
        matches = re.findall(pattern, doc.content, re.IGNORECASE)
        growth_data.extend(matches)
    
    return growth_data

2. Risk Assessment Pipeline

class FinancialRiskAnalyzer:
    def __init__(self, api_key: str):
        self.client = AsyncLexa(api_key=api_key)
    
    async def analyze_risk_factors(self, financial_docs: List[str]):
        """Comprehensive risk factor analysis"""
        
        async with self.client:
            documents = await self.client.parse(financial_docs)
            
            risk_analysis = {}
            for doc in documents:
                # Extract risk sections
                risk_chunks = doc.search_content("risk factor|risks|uncertainties")
                
                # Categorize risks
                categorized_risks = self._categorize_risks(risk_chunks)
                
                # Calculate risk scores
                risk_scores = self._calculate_risk_scores(categorized_risks)
                
                risk_analysis[doc.filename] = {
                    'total_risk_mentions': len(risk_chunks),
                    'risk_categories': categorized_risks,
                    'risk_scores': risk_scores,
                    'high_priority_risks': self._identify_high_priority(risk_chunks)
                }
            
            return risk_analysis
    
    def _categorize_risks(self, risk_chunks):
        """Categorize financial risks"""
        categories = {
            'market_risk': ['market', 'competition', 'demand'],
            'operational_risk': ['operations', 'supply chain', 'manufacturing'],
            'financial_risk': ['liquidity', 'credit', 'debt', 'cash flow'],
            'regulatory_risk': ['regulation', 'compliance', 'legal'],
            'technology_risk': ['cyber', 'technology', 'data breach']
        }
        
        categorized = {cat: [] for cat in categories}
        
        for chunk in risk_chunks:
            chunk_lower = chunk.lower()
            for category, keywords in categories.items():
                if any(keyword in chunk_lower for keyword in keywords):
                    categorized[category].append(chunk)
        
        return categorized

3. Earnings Call Analysis

async def analyze_earnings_transcripts(transcript_files):
    """Analyze earnings call transcripts for sentiment and insights"""
    
    async with AsyncLexa(api_key="your-api-key") as client:
        documents = await client.parse(transcript_files)
        
        earnings_insights = {}
        for doc in documents:
            # Extract Q&A sections
            qa_sections = doc.search_content("questions and answers|q&a")
            
            # Management guidance
            guidance = doc.search_content("guidance|outlook|forecast")
            
            # Key metrics mentioned
            metrics = extract_financial_metrics(doc.content)
            
            earnings_insights[doc.filename] = {
                'qa_insights': len(qa_sections),
                'forward_guidance': guidance,
                'key_metrics': metrics,
                'sentiment_indicators': analyze_sentiment(doc.content)
            }
        
        return earnings_insights

Performance Benchmarks

Lexa delivers exceptional performance for financial document processing:

Processing Speed

30 seconds average for 100+ page 10-K filing

Table Accuracy

99.8% accuracy on complex financial tables

Batch Throughput

500+ documents/hour with async processing

Integration Examples

Pinecone Vector Database

import pinecone
from cerevox import AsyncLexa

# Initialize Pinecone
pinecone.init(api_key="your-pinecone-key", environment="your-env")
index = pinecone.Index("financial-docs")

async def index_financial_documents(document_paths):
    async with AsyncLexa(api_key="your-api-key") as client:
        documents = await client.parse(document_paths)
        
        # Get optimized chunks for financial documents
        chunks = documents.get_all_text_chunks(
            target_size=1000,  # Good for financial context
            tolerance=0.1
        )
        
        # Create embeddings and upsert to Pinecone
        vectors = []
        for i, chunk in enumerate(chunks):
            vector = {
                'id': f'financial_chunk_{i}',
                'values': get_embedding(chunk),
                'metadata': {
                    'content': chunk,
                    'document_type': 'financial',
                    'source': documents[i // len(chunks) * len(documents)].filename
                }
            }
            vectors.append(vector)
        
        # Batch upsert to Pinecone
        index.upsert(vectors=vectors)
        
        return f"Indexed {len(vectors)} financial document chunks"

Security & Compliance

Lexa is SOC 2 Type II certified and provides enterprise-grade security for sensitive financial documents.

  • Data Encryption: End-to-end encryption in transit and at rest
  • Access Controls: Role-based access with audit logging
  • Compliance: SOC 2, GDPR, and financial industry standards
  • Data Residency: Control where your financial data is processed

Next Steps

Ready to transform your financial document analysis?